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a b s t r a c t

Many Siamese-based RGBT trackers have been prevalently designed in recent years for fast-tracking.
However, the correlation operation in them is a local linear matching process, which may easily lose
semantic information required inevitably by high-precision trackers. In this paper, we propose a strong
cross-modal model based on transformer for robust RGBT tracking. Specifically, a simple dual-flow
convolutional network is designed to extract and fuse dual-modal features, with comparably lower
complexity. Besides, to enhance the feature representation and deepen semantic features, a modal
weight allocation strategy and a backbone feature extracted network based on modified Resnet-50
are designed, respectively. Also, an attention-based transformer feature fusion network is adopted
to improve long-distance feature association to decrease the loss of semantic information. Finally,
a classification regression subnetwork is investigated to accurately predict the state of the target.
Sufficient experiments have been implemented on the RGBT234, RGBT210, GTOT and LasHeR datasets,
demonstrating more outstanding tracking performance against the state-of-the-art RGBT trackers.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Visual tracking [1–3] has attracted ascendant attention for
ts versatile applications in automatic driving, intelligent surveil-
ance, and robot navigation. Visual tracking is committed to esti-
ating the location and scale of a specific object in subsequent

rames, given its state in the first frame. Although visual tracking
as achieved great success with the help of the robust object rep-
esentation brought by deep neural networks, the robustness of
hese trackers [4,5] still needs further improvement in challeng-
ng scenes such as fast motion, low resolution, and illumination
hange.
There have been many studies on the robustness of trackers

n complex challenging scenarios by applying multi-modal infor-
ation. Recently, the RGBT tracking [6,7], which can integrate

he advantages of visible and thermal infrared information, has
idely been investigated. Specifically, compared with visible im-
ge, thermal infrared image has strong penetration ability and
s not sensitive to illumination change [8,9]. It can accurately
apture the object under extreme weather conditions, such as
ight, fog, or haze, as can be seen in Fig. 1(a). Nevertheless, when
ncountering the challenge of the thermal cross, the thermal
nfrared image tends to confuse different objects. On the other
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950-7051/© 2022 Elsevier B.V. All rights reserved.
hand, the visible image can distinguish more detailed information
such as color and texture, and has a stronger resolution in forest-
background separation, as can be seen in Fig. 1(b). Thus, the RGBT
tracking can preferably deal with complex challenging scenarios.

Many RGBT trackers have been proposed so far. Early RGBT
trackers use sparse learning-based method to achieve dual-modal
information fusion. Liu et al. [10] construct the likelihood function
of the particle filter tracking algorithm and realized the final
fusion of two modal information by minimizing the joint sparse
representation coefficient. Li et al. [11] integrate collaborative
sparse representation and modal weights in the Bayesian frame-
work to fuse two modal information. However, these trackers
are prone to tracking failure when the sparse representation or
classification score is insufficient to reflect modal reliability. In
recent years, some excellent RGBT trackers have emerged with
the extensive explorations and applications of the correlation
filter. Zhai et al. [12] jointly learn different modal correlation
filters by using low-rank constraint and then achieve the consis-
tent positioning of the object. Feng et al. [13] learn an adaptive
spatial–temporal regularized coefficient to build model and de-
sign a weighted ensemble strategy to integrate the information
between RGB and thermal infrared. However, these methods only
use the object features extracted by hand-crafted and cannot
represent the object information well. Inspired by widely appli-
cation of convolutional neural network (CNN) in RGB tracking, Li
et al. [7] design a dual-stream ConvNet and a FusionNet, which

can get rich semantic information in deep layers and complete
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Fig. 1. Illustration of the tracking advantage between multi-modal images. (a) The advantage of thermal infrared modality over RGB modality. (b) The advantage of
RGB modality over thermal infrared modality. As can be seen from the red box, the complementary advantage between the two modal images is obvious.
adaptive fusion of different images information, but its tracking
speed is far away from the real-time applications.

Inspired by the speed advantage of the Siamese network in
GB tracking, many researchers have explored the incorpora-
ion of Siamese networks to accelerate the RGBT trackers. Zhang
t al. [14] first apply a fully convolution Siamese network in RGBT
racking and the tracker can run at about 30 frames per sec-
nd. However, the correlation operation of Siamese-based track-
rs is a simple local linear matching process between template
nd search area. This process only uses the local information of
he search area without considering the important proportion of
racking target in global information, easily falling into the local
ptimum. In addition, it tends to fragment the complete semantic
nformation of the tracking target, which may result in difficulties
f determining the target boundaries.
In this paper, we propose a novel end-to-end trainable cross-

odal tracker based on transformer for robust RGBT tracking.
irstly, we design a simple dual-flow convolutional network to
xtract features from RGB and thermal infrared images respec-
ively and then concatenate them. Secondly, a modal weight
llocation strategy is designed to update the fused features infor-
ation, which can enhance the resolution of fused features and
ffectively reduce the difference between modal features. Then, a
ackbone network based on modified Resnet-50 is used to extract
eeper semantic features. After that, these features are reshaped
nto feature vectors and fed into a transformer feature fusion
etwork to combine the template and search region features.
inally, the learned feature vectors are fed into the classification
nd regression network, and then complete the state estimation
f the target. The main contributions can be summarized as
ollows:

• An RGBT tracking framework based on the transformer is
designed, which can enhance long-distance feature asso-
ciation and decrease the loss of semantic information. To
our knowledge, this is the first time to incorporate the
transformer in RGBT tracking.
2

• A shallow convolutional network is designed to extract and
fuse multi-modal information, which significantly simplifies
the calculation process. Moreover, an optimal modal weight
allocation strategy is proposed to obtain reliable weight for
effectively optimizing fused features.

• A classification and regression subnetwork by adding a cen-
tral branch is adopted to reduce the interference of back-
ground, further improving the accuracy of target prediction.

• Sufficient experimental results on four large benchmark
datasets, RGBT234 [15], RGBT210 [16], GTOT [11] and LasHeR
[17] indicate that the proposed tracker obtains more out-
standing performance compared to the state-of-the-art RGBT
trackers.

2. Related work

Visual tracking is regarded as one of the most fundamental
computer vision tasks and has attracted more and more studies
with more and more applications. This section will give a brief
introduction on RGB tracking, RGBT tracking, and transformer
mechanism.

2.1. RGB tracking

With the strong feature representation ability of the convo-
lutional neural network, the RGB tracking based on deep learn-
ing has gradually become the mainstream method. Danelljan
et al. [18] design a novel tracking architecture, capable of fully ex-
ploiting explicit components for target prediction. Bhat et al. [19]
develop an end-to-end discriminative model prediction archi-
tecture for robust tracking. Also, there are several excellent TIR
trackers based on deep learning. Liu et al. [20] design a multi-
layer convolutional framework to extract rich information for
object tracking. Liu et al. [8] regard tracking as a matching prob-
lem and train a matching network offline for online tracking.
However, these trackers are limited by the weak discriminative
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apacity of the learned features. To address this problem, Liu
t al. [21] introduce a dual-level feature model to effectively
istinguish distractors for robust object tracking. Currently, deep
earning-based trackers mostly use the structure of Siamese net-
orks because they are leading the way in the performance of
opular tracking benchmarks. As one of the pioneering works,
ertinetto et al. [22] construct a fully convolution Siamese net-
ork to train the tracker and express the visual task as a similar

earning problem. Based on [22], Valmadre et al. [23] integrate
orrelation filtering with basic feature representation by an on-
ine training scheme. Wang et al. [24] add an attention mecha-
ism to improve tracking performance. However, the similarity
easurement cannot cope with the scale change of the target
ased on deep network learning alone. Some researchers try
o utilize a regression network to directly predict the target
ocation. Li et al. [25] introduce a regional regression network,
hich can not only directly track target position through network
egression, but also evaluate the confidence of each candidate
egion. Zhu et al. [26] further improve the semantic perception
bility of the network model through data enhancement strat-
gy and overcome the problem of an unbalanced distribution of
raining data. However, the performance of these trackers cannot
onsequently improve when deeper networks are used as the
ackbone. Li et al. [27] move the position of the object ran-
omly and accordingly incorporate the Siamese network into the
racker. Zhang et al. [28] design a residual network to solve the
roblem that deep networks destroy strict translational invari-
nce. Chen et al. [3] introduce a simple yet effective anchor-free
iamese framework to avoid the intricate parameters of anchor
etting. To improve the tracking performance under interference
cenarios, Cheng et al. [29] design a refinement module that
an optimize the classification and regression branch to obtain a
obust learning ability. These improvements enable the resultant
rackers based on Siamese network to achieve better accuracy by
sing deeper network architecture.

.2. RGBT tracking

With the popularity of thermal infrared sensors and the pro-
osal of RGBT210 [16] and RGBT234 [15] tracking benchmarks,
GBT tracking has attracted extensive attention. Early work em-
loys sparse representation for RGBT tracking. Wu et al. [30] con-
atenate multi-source data information into a one-dimensional
ector and sparsely represent them for robust tracking. Li et al.
16] build a regularized map by adopting a weighted sparse
epresentation to obtain strong information for visual tracking.
owever, these efforts will tend to fail when reconstruction resid-
al cannot reliably calculate modal reliability. Recently, the cor-
elation filter trackers have been widely designed because of
heir significant computational efficiency. Yun et al. [31] build a
usion model based on correlation filter and can discriminatively
use different modal features. Luo et al. [32] exploit the multi-
ource information based on a tracking-by-detection architecture
nd designed an adaptive weighting scheme to fuse multi-modal
nformation. Xu et al. [33] design novel multi-fusion levels to
ffectively integrate the information of RGB and thermal infrared
mages. Deep learning techniques have been widely used in many
ision tasks. For RGBT object detection, Zhang et al. [34] de-
ign a novel end-to-end CNN network to solve the challenge
f RGBT saliency detection. However, the reliability of different
odalities is ignored. Zhang et al. [35] revisit different fusion
trategies and design a novel RGBT fusion network to learn the
mportance of each modality. There are also many RGBT trackers
ased on deep learning. Lu et al. [36] design a multi-adapter
etwork to obtain powerful RGBT representation. Wang et al. [37]
esign a modality-aware filter generation module, which can
3

adaptively adjust the convolution kernels of different input im-
ages to enhance the communication between them. In addition,
the RGBT tracking method based on the Siamese network has
been widely used for its excellent performance. Zhang et al. [38]
propose a multi-layer fusion tracking method based on dynamic
Siamese network, which made the tracking process more robust.
A complementarity-aware module is reported in [39] to enhance
the discriminability of the fused features with increased accu-
racy. Although these RGBT trackers promote the development of
the RGBT tracking, they tend to overlook the nature of feature
interaction in the learning process, which may limit the further
promotion of tracking performance.

2.3. Transformer mechanism

Transformer architecture is first proposed in [40] for machine
translation tasks and has attracted much attention for its simple
framework with excellent performance. Transformer architecture
consists of the attention mechanism, which reduces the distance
between any two positions in the input sequence to a constant
and calculates the importance of each position with the rest
of the sequence. Compared with RNN, the transformer is more
competitive in long sequence tasks by its parallel computation
and unique position encoding. In addition, it abandons traditional
recursion and convolution, thus having less training time. The
BERT algorithm [41] based on transformer has achieved excellent
performance in NLP multi-tasks.

Recently, many researchers have tried to introduce trans-
former architecture into the field of computer vision and achieved
excellent results in many fields. Zheng et al. [42] propose a vari-
ant of the transformer to improve the computational efficiency
in object detection of high-resolution. Also, some efforts have
been made to introduce transformer into visual tracking. Choi
et al. [43] design a deep network based on attentional mechanism
to adaptively choose the subset of the associated correlation
filters for robust tracking. Yu et al. [44] propose a deformable
attention network to enhance discrimination. However, these
trackers are dependent on feature correlation operations on the
fusion of template and searched areas. Hence, an attention-based
fusion network is presented to combine the features of template
and searched area in [45], which abandons the process of corre-
lation operation. This work initiates our efforts to incorporate the
transformer into RGBT tracker.

3. The transformer-based RGBT tracker

This section will first give an overview of the proposed RGBT
tracker and then describe the detail of each component of the
overall network architecture. The training loss of the proposed
tracker is also described accordingly.

3.1. Overview

The overall flow chart of the proposed tracker is shown in
Fig. 2 and we can find that the whole tracking process can be di-
vided into four parts: shallow information fusion and weight opti-
mization, deep semantic feature extraction network, transformer
feature fusion network, classification and regression subnetwork.

Specifically, the clipped RGB and thermal infrared images are
sent into the shallow dual-flow convolutional neural network for
feature extraction. The extracted RGB features are then concate-
nated to the extracted thermal infrared features. Then a weight
optimization strategy is invented to optimize the representation
of the fused features. To obtain the rich semantic information of
images, a backbone network by a modified Resnet-50 is adopted
to obtain further semantic features. Then the extracted features
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Fig. 2. The pipeline of the proposed RGBT tracker. The overall framework consists of four main parts: shallow information fusion and weight optimization, backbone
framework for deeper semantic feature extraction, transformer feature fusion network for the fusion of template and search branches, classification and regression
subnetwork for the prediction of target state.
Fig. 3. Illustration of the shallow information fusion and weight optimization network. First, the features of RGB and thermal infrared images extracted by a simple
dual-flow convolutional network are concatenated. Then the designed modal weight allocation strategy is to optimize the fused features, which can effectively
enhance the resolution and reduce the difference of fused features.
f
t
a

are sent to the fusion network through flatten operation. Finally,
the output feature vectors pass through the classification and
regression subnetwork to complete the prediction of the target
state.

3.2. Shallow information fusion and weight optimization

In recent years, RGBT tracking has attracted extensive at-
ention for its unique advantages, and how to effectively fuse
he complementary information of them to complete the de-
ired tracking task is still the most essential problem. Many
rackers cannot take full advantage of the complementary in-
ormation from the difference among variant modal features.
n addition, the fusion stage follows mostly that of the deep
eature extraction, which may greatly reduce the efficiency of the
racing process. Hence, we design a shallow information fusion
nd weight optimization network, as shown in Fig. 3.
The input RGB and thermal infrared images are first extracted

y a simple dual-flow convolutional network to obtain features
R and FT . The fused feature F is obtained by:

= cat(FR, FT ) (1)

where cat(∗) defines the concatenation operation. To get the
weight w, we make the fused feature F through the 3*3 convolu-
tion layer and sigmoid function:

w = σ (conv(F , β)) (2)

where conv(∗, β) defines the convolution layer with parame-
ters, σ defines the sigmoid function layer. The reliability of the
modal information can be reflected by the generated weight. After
getting the weight w and F, we can obtain:

F̂ = F ∗ w (3)
4

where ∗ represents the multiplication calculated by the element,
and the optimization of feature representation is completed by
weight optimization strategy.

3.3. Deep semantic feature extraction backbone network

To extract deeper features and rich semantic information, we
use the modified Resnet-50 network as our backbone extraction
network. As shown in Fig. 4, the first and the final stage of normal
ResNet-50 are removed so that the output of the fourth stage is
taken as the final output. In addition, to obtain a better feature
resolution, we set the down-sampled convolution step of the
fourth stage as 1.

3.4. Transformer feature fusion network

The fusion network of the baseline tracker Transt-tracking [45]
is adopted here to arrive at a specific feature fusion process
shown in Fig. 5.

From Fig. 5, we can see that the template feature Ft and search
eature Fs which are extracted by the backbone network first pass
hrough the 1*1 convolutional network and obtain Ft0 ∈ Rd×Hz×Wz

nd Fs0 ∈ Rd×Hx×Wx . We flat the feature Ft0 and Fs0 in the spatial
dimension, and get Ft1 ∈ Rd×Hz×Wz and Fs1 ∈ Rd×Hx×Wx . Then
the feature vectors Ft1 ∈ Rd×Hz×Wz and Fs1 ∈ Rd×Hx×Wx , are fed
into the TM module, as shown in Fig. 5. First, they through a
transformer self-attentional module (TS). Then the transformer
cross-attention module is designed to fuse different branch in-
formation. To be more specific, two transformer cross-attention
modules are used to get the feature vectors of their own and
the other branch and fuse them. To make the fusion information
more accurate, the fusion process is repeated four times. Finally,
an extra transformer cross-module is added to fuse the feature
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Fig. 4. Illustration of the backbone network constituted of the modified Resnet-50 network.
Fig. 5. Illustration of the features fusion network based on the transformer.
Fig. 6. Illustration of the transformer self-attention module. The module is mainly composed of the multi-head self-attention in a residual form.
o

Z̃

ectors of the template and search branch. Next, we will give a
rief introduction to TS and TC modules.
Fig. 6 shows the self-attention modules for transformer (TS).

he TS module first introduces a positional encoding process
o effectively distinguish the position information of feature se-
uences. Then the multi-head self-attention is used to integrate
he feature vectors of different positions. Finally, residual form is
sed to get the output. The specific calculation process of the TS
odule is as follows:

EC = Z + MultiHead(Z + Px, Z + Px, Z) (4)

here Px ∈ Rd×Nx represents the spatial positional encoding
enerated by using a sine function. Z ∈ Rd×Nx and ZEC ∈ Rd×Nx

s the input and the output of the TS module, respectively.
Fig. 7 shows the cross attention module for transformer (TC).

he TC module first introduces a positional encoding process
o effectively distinguish the position information of feature se-
uences. Then the multi-head cross-attention is used in residual
orm to integrate the feature vectors from different inputs. In
ddition, a feedforward network (FEN) is used in the form of
esidual to get the final output. The specific calculation process
5

f the TC module is as follows:

CF = Zq + MultiHead(Zq + Pq, Zkv + Zkv, Zkv) (5)

ZCF = Z̃CF + FEN (̃ZCF ) (6)

where Z ∈ Rd×Nx and Zkv ∈ Rd×Nkv are the two inputs from
different branches. Pq ∈ Rd×Nq and Pkv ∈ Rd×Nkv are the spatial
positional encoding of Zq and Zkv , respectively. Z̃CF and ZCF are
the output of the residual multi-head cross-attention and the final
output, respectively.

3.5. Prediction with classification and regression subnetwork

As shown in Fig. 2, the subnetwork of classification and regres-
sion is composed of a classification branch, a regression branch,
and a center-ness branch. The classification branch determines
the location of the target by calculating the classification results
of positive and negative samples; The regression branch abandons
anchor boxes based on prior knowledge and directly predicts
normalized coordinates to simplify the tracking framework. In
addition, the locations far from the target center tend to produce
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Fig. 7. Illustration of the transformer cross-attention module. The module is mainly composed of multi-head cross-attention and FFN in a residual form.
ow-quality predictive bounding boxes. A central branch is there-
ore added to remove outliers, further improving the accuracy of
arget state prediction.

.6. Training loss

The target on each search patch is marked as a ground real
oundary box. We build the positive samples by selecting the pre-
icted feature vector corresponding to the pixels in the ground-
ruth box. The negative samples are composed of the rest sam-
les. The classification loss is decided by all samples and the
egression loss is determined by positive samples.

The standard binary cross-entropy loss is adopted to measure
he loss of classification:

cls =

∑
j

[yj log(mj) + (1 − yj) log(1 − mj)] (7)

where yj defines the ground-truth label of the jth sample, yj =

denotes foreground, and mj represents the probability in the
oreground.

Meanwhile, the linear combination of l1-norm loss L1(., .) is
mployed to calculate the regression loss as follows:

reg =

∑
j

Π{yj = 1}[λGLGIOU (bj, b̂) + λ1L1(bj, b̂)] (8)

where yj = 1 defines the positive sample, bj denotes the jth
output box, and b̂ defines the normalized ground-truth box. The
regularization parameters λG and λ1 are set 2 and 5, respectively.
LGIOU (., .) denotes the generalized IoU loss.

The center-ness loss can be formulated by employing the
BCEWithLogitsLoss function:

Lcen = −

∑
j

[cj log σ (tj) + (1 − cj) log(1 − σ (tj))] (9)

where tj defines the jth predicted center-ness score of the corre-
sponding location and σ defines the sigmoid function. cj defines
the percentage of the relative distance between the correspond-
ing location and center location. If the corresponding location is
not in the foreground, the value of cj is set to 0.

The overall training loss can be calculated as follows:

L = η1Lcls + η2Lreg + η3Lcen (10)

where η1, η2, η3 represent the weight coefficients of classification
loss, regression loss and center-ness loss, respectively.

4. Experiments

This section will first introduce the experiment setup and then
compare the experimental results of the proposed tracker with
those of the state-of-the-art ones on four public RGBT datasets,
RGBT234 [15], RGBT210 [16], GTOT [11] and LasHeR [17]. In
addition, the ablative study is given to further evaluate each
component of the proposed tracker.
6

4.1. Experimental setup

4.1.1. Implementation details
The proposed RGBT tracker is trained on the LasHeR dataset

[17] and the AdamW algorithm with the learning rate of 0.0001
is adopted to optimize the model. In addition, the values of
weight decay and momentum are selected as 0.0001 and 0.9,
respectively. The size of the cropped template patch and search
region is 128 pixels and 256 pixels, respectively. The backbone
network is composed of the modified ResNet-50 and the corre-
spondent network parameters are initialized by the pre-trained
model on the ImageNet dataset [46]. In the training process, the
batch size is set to be 20, and 60 epochs with 2000 iterations
per epoch are performed. In the process of calculating overall
loss, the weight coefficients are set as η1 = 8.2, η2 = 4.7,
η3 = 1.1, respectively. For the tracking progress, the first frame
of sequential images is used as the template patch. The search
region in the current frame is regarded as the input of the search
branch. In the classification-regression subnetwork, the box with
the best score is regarded as the final output result. The proposed
tracker is implemented based on Python 3.6, PyTorch 1.4.1, and
all the experiments are run on a machine with CPU E5-2620 and
four Nvidia GTX 1080Ti GPUs.

4.1.2. Experimental benchmarks
Four public RGBT datasets, including GTOT, RGBT210, RGBT234

and LasHeR are adopted to evaluate the performance of different
trackers. A brief description of them is given as follows.

RGBT210 dataset is a large dataset used to evaluate the RGBT
tracking methods. It contains 210 sets of RGB and thermal in-
frared video pairs with high precision alignment. The total num-
ber of video frames reaches 210 K, and all tracking targets are
accurately marked with ground truth values. RGBT210 video se-
quences are divided into 12 different attributes such as low
illumination and thermal crossover, to analyze attribute-based
tracking.

RGBT234 is an extension of the RGBT210 dataset. It contains
234 highly aligned RGB and thermal infrared sequence pairs. The
total frame number of RGBT234 is about 234 K, of which the
longest sequence has about 8000 frames. As with RGBT210, the
RGBT234 dataset also marks 12 attributes which are to evalu-
ate the performance of tracking algorithms based on different
attributes.

GTOT dataset is a standard benchmark dataset for RGBT track-
ing. It consists of 50 pairs of visible and thermal infrared video
sequences with a total frame size of about 15 K. It can be divided
into 7 subsets according to annotated attributes and all tracking
targets are accurately marked with ground truths.

LasHeR dataset is a recently released benchmark for RGBT
tracking. The dataset contains more than 734.8 K manually anno-
tated frames and 1224 pairs of highly aligned visible and thermal
infrared video sequences. LasHeR can be split into training and
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Fig. 8. Evaluation plots of precision and success on the RGBT234 dataset.
esting subsets according to the target class distribution. Such a
arge test dataset brings a great challenge to the tracking algo-
ithms. Moreover, the LasHeR video sequences are divided into
9 different attributes such as frame lost and similar appearance,
hich make the tracking challenging.

.1.3. Evaluation metrics
The well-defined two commonly used criteria, Precision Rate

PR) and Success Rate (SR), are employed to quantitatively eval-
ate the performance of each tracker.
PR is the percentage of frames whose distance between the

utput position and ground truth is within a given threshold. The
iven threshold is set differently in different datasets because of
he target characteristics they contained. For the RGBT210 and
GBT234 datasets, the given threshold of distance is set to 20
ixels.
SR is the percentage of frames whose overlap ratio between

he output box and the ground truth box is greater than a given
hreshold. Assuming that the target boundary box of the pre-
icted output is RP and the real target boundary box of manual
nnotation is RG, the intersection ratio of the two boundary boxes
s defined as:

=
|RP ∩ RG|

|RP ∪ RG|
(11)

here ∩ represents the intersection, ∪ represents the union, |·|

epresents the number of pixels contained. The area under the
urve is employed to calculate the SR score in this paper.

.2. Evaluation on RGBT234 dataset

Experimental results of the proposed tracker and other RGBT
rackers on RGBT234 dataset are firstly reported. The compared
rackers include DAFNet [47], RT-MDNet [48], DAT+RGBT [49],
DNet+RGBT [50], JMMAC [51], SOWP+RGBT [6], SRDCF [52],
CO [53], CSR-DCF [54], C–COT [55], KCF+RGBT [56], SOWP [6],
ANet [57], SiamDW+RGBT [28]. Then we analyze the perfor-
ance of these trackers on each attribute. Finally, the visualized

esult of different trackers is given to qualitatively verify the
ffectiveness of the proposed tracker.

.2.1. The overall performance
As shown in Fig. 8, the proposed tracker reaches 82.5%/61.6%

n PR/SR on the RGBT234 dataset and achieves the best per-
ormance among all trackers. More specifically, compared with
he strong tracker JMMAC, which ranks second in SR, it can be
een that the proposed tracker obtains an improvement of 4.3%.
7

Table 1
Evaluation results of the proposed tracker with other latest RGBT trackers on
the RGBT234 dataset.
Algorithm CMPP SiamCDA CBPNet TFNet Ours

Precision Score 75.1 76.0 79.4 80.6 82.5
Success Score 49.1 56.9 54.1 56.0 61.6

Table 2
Evaluation results and running efficiency of different trackers on the RGBT234
dataset.
Algorithm SOWP MDNet+RGBT MANet JMMAC Ours

Precision Score 64.2 72.2 77.7 79.0 82.5
Success Score 41.1 49.5 53.9 57.3 61.6
FPS 3.2 3 2 4 24.6

Meanwhile, the proposed obtains an improvement of about 2.9%
in PR over the second-best tracker DAFNet. These results indicate
that our proposed tracker has strong competitiveness. Moreover,
the SOWP+RGBT obtains about 25.4%/4.0% promotion in PR/SR
over the SOWP based on RGB information and further confirms
that RGBT tracking can be more robust than RGB tracking.

Since the codes of these latest trackers, including CMMP [58],
SiamCDA [39], CBPNet [59] and TFNet [60] have not been an-
nounced, we can only compare our proposed tracker with them
according to the results given by their papers. Table 1 reports the
comparative result of the proposed tracker and the newly avail-
able RGBT tracker. The tracking results of these latest trackers can
achieve 75.1%/49.1%, 76.0%/56.9%, 79.4%/54.1% and 80.6%/56.0%,
respectively. It is also worthy to note that our proposed tracker
still performs more effectively than those newly reported ones.
These experimental results further prove the effectiveness of our
proposed tracker.

Furthermore, the tracking speeds of some RGBT trackers are
shown in Table 2. It is easily shown that the proposed tracker can
run up to 24.6 FPS, much higher than that of the other trackers
of SOWP, JMMAC, MDNet+RGBT, and MANet. Thus, the proposed
tracker outperforms these RGBT trackers in both accuracy and
efficiency.

4.2.2. Attribute-based evaluation
To further prove the robustness of the proposed tracker, we

compare the proposed tracker with the state-of-the-art trackers
under different attributes. The attributes include no occlusion
(NO), background clutter (BC), partial occlusion (PO), low resolu-
tion (LR), motion blur (MB), heavy occlusion (HO), camera moving
(CM), thermal crossover (TC), deformation (DEF), low illumination
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Fig. 9. Attribute-based evaluation plots of different trackers on the RGBT234.
LI), fast motion (FM) and scale variation (SV). The attribute-based
erformance comparison results in PR/SR are shown in Fig. 9.
From Fig. 9, we intuitively know that the proposed tracker

an deal with the sequences with multiple challenges and sig-
ificantly perform much better than all other trackers in most
ttributes. More specifically, most of these trackers can achieve
igh accuracy facing with no occlusion, while their performance
eteriorates rapidly in cases of heavy occlusion. The proposed
racker can still maintain stable robustness which may give the
redit to fully using the complementary information of RGB and
hermal infrared images. Especially in the cases of CM and DEF,
he tracking precision of the proposed tracker can reach 83.1%
nd 80.3%, respectively, which significantly shows more excellent
erformance than the second-best tracker in the two cases.
8

Furthermore, Fig. 10 shows the visualized results in several
specific challenging scenarios between the proposed tracker and
the others including ECO, MANet, SOWP, etc. It is not difficult
to observe the proposed tracker outperforms other trackers in
most cases, such as fast motion and partial occlusion. For in-
stance, in the sequence of bikeman, the proposed tracker can
accurately locate the target while the compared trackers tend to
fail for tracking. This proves that the proposed tracker can achieve
outstanding performance in challenging scenarios.

4.3. Evaluation on RGBT210 dataset

To further verify the excellent performance of the proposed
tracker, 10 compared trackers are selected on the RGBT210 dataset
.
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Fig. 10. Visual comparisons of tracking results between our proposed tracker and another three trackers in sequence graycar2, bikeman and dog10 on RGBT234.
hey are MANet [57], CCOT [55], MDNet [50], SGT [16], SOWP+
GBT [6], DSST+RGBT [61], MEEM+RGBT [62], KCF+RGBT [56],
OWP [6], SiameseFC [22].
Fig. 11 shows that the proposed tracker obtains 80.6%/59.2%

n PR/SR on RGBT210 and outperforms all other trackers. Specif-
cally, compared with the second-best tracker, i.e., MANet, the
roposed tracker obtains 5.3%/7.5% promotion in PR/SR. More-
ver, the proposed tracker is more robust than the strong trackers
ike MDNet, SGT, CCOT, and SiameseFC. The top two trackers are
ll based on deep learning, which also shows that the trackers
ased on deep learning have gradually become the mainstream.
To further prove the robustness of the proposed tracker, we

lso compare the proposed tracker with other trackers under each
ttribute sequence on the RGBT210 and the attribute-based result
s shown in Table 3.

As shown in Table 3, the proposed tracker achieves the best
esult in SR on each attribute. Especially in the challenge of fast
otion (FM), the proposed tracker reaches 78.3%/56.2% in PR/SR
nd obtains 15.0%/16.3% promotion compared to the second-
est tracker MANeT. However, the PR score of the proposed
racker is slightly lower than CCOT in thermal crossover (TC).
he main reason is that thermal infrared information tends to be
nreliable facing thermal crossover. Consequently, the proposed
9

tracker fused the unreliable thermal information tends to be
worse than the tracker that only uses the RGB information. This
shows that our fusion strategy needs to be further improved. Gen-
erally speaking, the proposed tracker is outstanding in almost all
attributes, confirming the effectiveness of the proposed tracker.

Furthermore, in Fig. 12, we present the qualitative results on
some sequences with different challenging factors between the
proposed tracker and other compared trackers including SGT,
MDNet, MANet, SiameseFC, etc. As shown in Fig. 12, it can be
found that the compared trackers tend to track failure facing the
challenging sequences while the proposed tracker can accurately
locate the target. This demonstrates that the proposed tracker can
obtain outstanding performance in challenging scenarios.

4.4. Ablative study

To provide a thorough analysis of the main components, we
divide the proposed tracker into three other versions, including:
(1) Baseline, that we extend the Transt-Tracking [45] into RGBT
tracker as the baseline tracker; (2) Baseline+WES, that we utilize
the weight optimization strategy to update feature represen-
tation; (3) Baseline+CWES, that we combine both the weight
optimization strategy and center-loss branch. Table 4 shows the
result of different versions.
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Fig. 11. Evaluation plots of precision and success on the RGBT210 dataset.

Fig. 12. Visual comparisons of tracking results between our proposed tracker and another three trackers in sequence baby, baketballwaliking and soccer2 on RGBT210.
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Table 3
Attribute-based evaluation of the proposed tracker and other state-of-the-art trackers on the RGBT210 dataset. The top three are in
red, purple, and blue colors, respectively.
,

r

Table 4
PR(%) and SR(%) scores of the proposed tracker with its variants on RGBT234
and RGBT210 datasets.
Algorithm Baseline Baseline+WES Baseline+CWES(Ours)

RGBT234 77.3/57.2 80.6/60.2 82.5/61.6
RGBT210 75.5/54.8 77.9/57.2 80.6/59.2

Table 5
The running efficiency of different fusion stages on the RGBT234
dataset.

Middle Fusion Late Fusion Ours

FPS 19.4 18.6 24.6

As shown in Table 4, the proposed tracker obtains more out-
tanding performance than other competing versions on RGBT234
nd RGBT210 datasets, which demonstrates the robustness of
he proposed tracker. More specially, on the RGBT234 dataset,
he Baseline+WES obtains the improvement of 3.3% and 3.0%
ver the Baseline in PR/SR, which fully validates the effective-
ess of the proposed weight optimization strategy. Moreover,
e find that the Baseline+CWES can obtain more outstanding
erformance than Baseline+WES, proving the effectiveness of the
enter-loss branch. Also, Table 4 presents the evaluation results
f each component on the RGBT210 dataset. It is easy to observe
hat the Baseline+CWES obtains about 2.9% and 4.5% promotion
n PR/SR over the Baseline+WES. Meanwhile, the Baseline+WES
utperforms the Baseline. The above results all fully prove the
ffectiveness of the weight optimization strategy and center-loss
ranch.
To prove that the designed shallow convolutional network

n early fusion stage can improve the tracking efficiency, we
ompare the proposed tracker and the variants of the proposed
racker which use middle fusion and late fusion, respectively.
able 5 reports the experimental results of tracking efficiency
f different fusion stages trackers. It is easily shown that the
roposed tracker can run up to 24.6 FPS, much higher than middle
usion and late fusion. This proves the effectiveness of designed
hallow convolutional network in the early fusion stage. Conse-
uently, we can conclude that all the designed modules in the
roposed tracker are contributed to improving the performance.

.5. Evaluation on GTOT dataset

Fig. 13 presents the compared results of the proposed tracker
ith 9 state-of-the-art trackers including MANet [57], JMMAC [51]

COT [55], DAT+RGBT [49], MDNet+RGBT [50], RT-MDNet [48],

11
SRDCF [52], SiamDW+RGBT [28] and ECO [53] on the GTOT
dataset.

As shown in Fig. 13, the proposed tracker achieves the best
performance on the GTOT dataset on both evaluation metrics
compared with all other recent trackers. More specifically, the
proposed tracker can be up to 91.1%/75.3% and achieves about
0.9%/2.1% improvement in PR/SR over the most competitive tracke
JMMAC. Besides, compared with the other recent strong trackers,
i.e., MANet and DAFNet, the proposed tracker outperforms them
with 1.7%/2.9% and 2.0%/4.1% in PR/SR, respectively. Since the
result of the latest Siamese tracker, i.e., SiamCDA has not been
announced, we compare the proposed tracker with it, which
achieves 87.7%/73.2% in PR/SR, given by Zhang et al. [39]. It is
easy to find that the proposed tracker still obtains 3.4%/2.1%
promotion over SiamCDA. These experimental results in both
precision scores and success scores prove the effectiveness of the
proposed tracker.

4.6. Evaluation on LasHeR dataset

The proposed tracker is further compared in precision and
success with 12 state-of-the-art trackers including DMCNet [63],
MaCNet [64], MANet++ [36], MANet [57], CAT [65], DAFNet [47],
mfDiMP [66], FANet [67], DAPNet [68], SGT++ [15], CMR [69] and
SGT [16] on the LasHeR testing set, which is the largest RGBT
tracking dataset at present.

Fig. 14 reports the compared results of these trackers on the
LasHeR test dataset. It can be found that the proposed tracker
attains 78.0%/62.6% and outperforms all the compared trackers.
Compared with the second-best tracker DMCNet, the proposed
tracker obtains an improvement of about 29.0%/27.1%. In addition,
the proposed tracker also achieves better tracking results com-
pared with MANet and DAFNet in PR/SR, which are all popular
and strong trackers proposed in recent years. These experimental
results fully demonstrate the advantages of the proposed tracker.

To make the comparison experiments fair enough and further
prove the effectiveness of the proposed tracker, we compare
the proposed tracker with the two most representative RGBT
trackers, MANet and mfDiMP which are retrained on the LasHeR
training set. Table 6 reports the experimental results of the pro-
posed tracker and retrained RGBT trackers on the LasHeR testing
set. It is easy to see that the proposed tracker still shows the best
excellent performance on the LasHeR testing set compared with
the retrained MANet and mfDiMP. More specifically, the proposed
tracker can be up to 78.0%/62.6% in PR/SR and has a significant
improvement of 17.3%/16.5% and 23.8%/25.8% compared with
MANet and mfDiMP. These comparison experiments also fully

confirm the robustness and effectiveness of the proposed tracker.
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Fig. 13. Evaluation plots of precision and success on the GTOT dataset.
Fig. 14. Evaluation plots of precision and success on the LasHeR test dataset.
Table 6
PR(%) and SR(%) scores of the proposed tracker with retrained
mfDiMP and MANet on the LasHeR test dataset.
Algorithm MANet mfDiMP Ours

Precision Score 60.7 54.2 78.0
Success Score 46.1 36.8 62.6

5. Conclusion

In this paper, we propose a strong cross-modal model based on
ransformer for robust RGBT tracking. A simple dual-flow convo-
utional network is first designed to extract and fuse dual-modal
eatures. This effectively reduces the computational complexity
n the fusion process. Then, a modal weight allocation strategy
s designed to enhance the feature representation. To decrease
he loss of semantic information and enhance the connection be-
ween long-distance information, a feature fusion network based
n transformer is utilized. This helps focus on more discrimi-
ating information. Besides, a center-loss branch is adopted in
he designed classification and regression subnetwork to more
ccurately predict the localization of the target. Extensive ex-
eriments on RGBT234, RGBT210, GTOT and LasHeR datasets,
emonstrate the effectiveness of the proposed tracker against the
tate-of-the-art trackers.
12
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